

	Countermeasures with the extension (eg B3) are referenced on the other side						
General Engineering Countermeasure Crash Group / Problem					Traffic Management: 36) Diverters 37) Full Street Closure 39) Pedestriai Streets/M		
Midblock Related							
	$4{ }^{4.567}$					${ }^{4029835659}$	Sishas
ditur	6	1.12		${ }_{2508}^{2658}$		${ }^{46}$	${ }_{5}^{5859}$
				2268		46	${ }_{\text {S3, } 5 \text { 6, } 9,61}$
Bus Realiect:							
Lital	$\underbrace{\substack{\text { a }}}_{\substack{2.56 \\ 1.6 \\ 1.6}}$	10.17		${ }_{23}^{2325}$		${ }_{46}^{45}$	
Failue to Y Yeld at Unsignalized Location:							
	56						${ }^{6}$
Intersection Reated:							
	6	${ }_{0}^{13}$	${ }^{18}$	${ }^{\frac{232425}{2,24}}$			5
	$\frac{6}{6}$	9,15,17					${ }_{5}^{515959}$
			21				
Hex	7			${ }^{25}$	${ }^{39}$	${ }^{4188849}$	
	${ }_{\frac{56}{7}}^{7}$	16	${ }^{21}$	${ }^{23,5223,30}$			
Otiter	${ }^{37}$	9,16	21	${ }_{232425}$		${ }^{41,8849}$	59
	${ }_{1.6}$	${ }_{\text {He, }}^{11,12}$				${ }_{46}^{46}$	
Peute osstool		14	22	${ }^{28}$			
Workngiplying in Road							
	1.6	${ }^{11.1 .12}$		${ }^{268727353} \mathbf{2}$	${ }^{378839}$	${ }^{46}$	
	$\frac{1.6}{6}$						${ }_{\text {gi963 }}^{596}$
Voti R Road							
	${ }^{1.166}$	${ }_{\text {9,1.517 }}^{14}$		${ }^{23}$			${ }_{\substack{9961 \\ 59}}$
	${ }_{6}^{6}$						${ }_{565168}^{59}$

What is the Focus of this brochure?

One important factor in pedestrian crashes is	SPEED...	
The probability of a pedestrian being severly injured and/or killed when struck by a vehicle increases as the motorist speed increases. Figure 1 shows the correlation of vehicle impact speed and pedestrian death rates. As vehicle speeds increase the ability of the driver to stop in time for crossing pedestrians also significantly decreases.		
		45\%
	15\%	
	$\underset{\substack{32 \mathrm{~km} / \mathrm{h} \\ 20 \mathrm{MPH}}}{ }$	$\underbrace{}_{\substack{50 \mathrm{km/h} \\ 30 \mathrm{MPH}}}$

teucing trafic speeds not only reduces the severity of pedestrian crashes, but may redure
increase in the distance a venicle will travel during the 2.55 second p perception/reaction

Figure 2 : Relationship between safe stopping distance and travel speed

The brochure is disseminated under the sponsorship of the Department of
Transportation in the interest of information exchange. The United States
 ?

What is the Focus of this brochure?
This brochure "A Walkable Community"focuses on the design of safe and successful pedestrian faciilites. A Crash Group/General Engineering Countermeasure Matrix
identifies potential solutions for use by safety practitioners. This matrix is particularly helpful as a categorical resource of potential countermeasures, which may be identifies potential solutions for use by safety practitioners. This matrix is particularly helpful as a categorical resource of potential countermeasures, which may be
implemented at a location to address a particular peedestrian crash type. Some of the engineering countermeasures are illustrated on the map (other side) as referenced. Moreover, this Matrix should be used in conjunction with local site data, including the number of pedestrian crashes and types, traffic and pedestrian volumes, vehicle
speeds, and road width to develop the most suitable countermeasure. Conscientious planning, effective education programs, and consistent safety and law enforcement speeds, and road width to develop the most suitable countermeasure. Conscientious planning, effective education prograns,
also contribute to improving our communities for pedestrians. A "walkabbe" community is much more than just sidewalks...

 e.g.alocation of pedestrian signal timings.
Table 2: Effects of curb radius on pelestrian

Table 2 shows shat the larger the curb radius at
intersections, the pedestrtirin crossing distance is increase and also the time to cross. Transortation practitionerest
need to balance the need for a larger curb radius against existing trafic chara
intersection safery.
At itimes, pedestrian faciility improvements and
expansions are not supported because se levels
 are low . Many reas
travel and include:

- Poorly designed facilities excessive a ccess points
- FFiliure to provide a contiguou
facities
- Concers for personal safery
- Poor lighting
Latco f separated facilities
Failus
- Failure to provide facilities to and from popular orig
destinations
- Noorprotection from inclement weather
- Lack of pedestrian funiture e.e.g.benches)

Table 3:Common Pedestrian Characteristics

Age	Characterisics
0-4	learning to walk, requiring constant supervision, developing peripheral vision and depth perception
5-12	Increasing independence but still requiring supervision, poor depth perception, susceptible to "Dart Out"/Intersection Dash
13-18	Sense of invulnerable, intersection dash
19-40	Active, fully aware of the environment
40-65	Slowing of reflexes
$65+$	Street crossing difficulty, poor vision, difficulty hearing, high fatality rate

Reducing Turning Conficts: $\begin{aligned} & \text { Turning crashes kill or injure } \\ & \text { many pedestrians, some low-cost engineering }\end{aligned}$
countermeasurus sinclude:

- Design compact intersection
force slower speeds C

- During certain hours shen there are hivher or oncentrations of
pedestrians crossing use aseparate left-urn phase in
pedestrians crossing use a separate eleft-turn phase in
coniuction with he WALKDONT WALL s signal or
restricteft tums

Place sign st o remind motorists of their duty to "Yield"to
Idder pedestrians and pedestrians with disabilities ncluuing those using special walking aids or wheelchairs heed caraftully desigigne facailities that eliminate barriers

Curb cuts and amps 15
Tactil stips

Cactile strips
Casy-treach activation buttons HA
Audible warnings and message 5 sytem

Pedestrian signal timing a t slower than average walking
speed
Maximum grade of $1: 20$ and cross slope of $1: 50$ (ramps can
Maximum grade of $1: 20$ and cross
heuptot $1: 122$.
Rooadway cossing refuge 12 , $: 6$

- Traffic calming devicices

As more and more construction/work zones appear in
our urban areas the need to protect pedestrians and our urban areas the need to protect pedestrians and
provide a sefe travel eway becoes more critica. Some
consideration for pedestrians in work zones include: Considearation for pedeestrians in work zoneses indl.some:
Separate pedestrians from conflicts with constuction Separate pedestrians from conflicts with construction
-equimentent
Separate eedestrians from conficicts with re-routed trafic - equipmentent pedestrins from conficts with re-routed traffic
Provide a a sefe, convenient and accessible route that movidea aste, convenient, and accessible route that
Minitain the direction and charctor of heoriginal orote
Minize the amount of o onstruction access points
 through the local media and pedestrian interest groups
Avoid using delineating materias that are dificiulto Avoid using delineating materials that re diffín
recognize by persons with impaires sight

\author{

- Driver Chatentention
}

- Collision beninin ind an areas ~ 70 percent)

