PBIC Webinar

How to Create a Bicycle Safety Action Plan: On-Road Bicycle Facilities

Dan Goodman, Federal Highway Administration Bill Schultheiss, Vice President, Toole Design Peter Lagerwey, Regional Director, Toole Design

Oct. 16, 2014, 2 pm

Today's Presentation

- Introduction and housekeeping
- ⇒ Audio issues?

Dial into the phone line instead of using "mic & speakers"

- PBIC Trainings and Webinars www.pedbikeinfo.org/training
- Registration and Archives at pedbikeinfo.org/webinars
- PBIC News and updates on Facebook www.facebook.com/pedbike
- Questions at the end

Ongoing Activities

- Pedestrian and bicycle assessments
- Network documentation and promotion
- Pedestrian and bicycle data initiatives
- Road Diet Guide
- Separated Bike Lane Planning and Design Guide

www.pedbikesafe.org/BIKESAFE

Ongoing Activities

- Guidebook for Evaluating, Establishing, and Tracking Pedestrian and Bicycle Performance Measures
- Multimodal Conflict Points
- Flexibility in Pedestrian and Bicycle Facility Design
- Global Benchmarking on Delivering Safe and Connected Pedestrian and Bicycle Networks
- Workbook for Building On-Road Bike Networks through Routine Resurfacing Programs
- NHI Pedestrian Facilities Design Course Update

Strategic Agenda for Pedestrian and Bicycle Transportation

- Data
- Research
- Training
- Design Guidelines

For project updates, funding information, policy background, etc., visit: www.fhwa.dot.gov/environment/bicycle_pedestrian

On-Road Bicycle Facilities

Planning for Safety

Presented by:

Peter Lagerwey Toole Design Group

and

Bill Schultheiss, P.E. Toole Design Group

October 16, 2014

Instructors

Peter Lagerwey

Regional Office Director Toole Design Group Seattle, Washington plagerwey@tooledesign.com 206-200-9535

Bill Schultheiss

Vice President Toole Design Group Silver Spring, MD wschultheiss@tooledesign.com 301-927-1900

Pedestrian and Bicycle

nformation Center

Outcomes

At the end of this series, you will be able to...

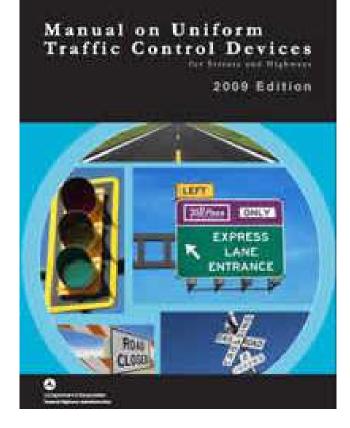
- Recognize a bicycle-friendly network of roads and trails will increase cyclists' safety.
- Describe how planners and engineers develop bicycle plans that directly address safety.
- Recognize bicyclists are a diverse subset of travelers with wide ranging skill and tolerance of traffic stress.
- Identify good practices and effective Countermeasures to enhance bicycle safety and accessibility.

Pedestrian and Bicycle

October

Section 1

Resources & Safety Analyses Approaches

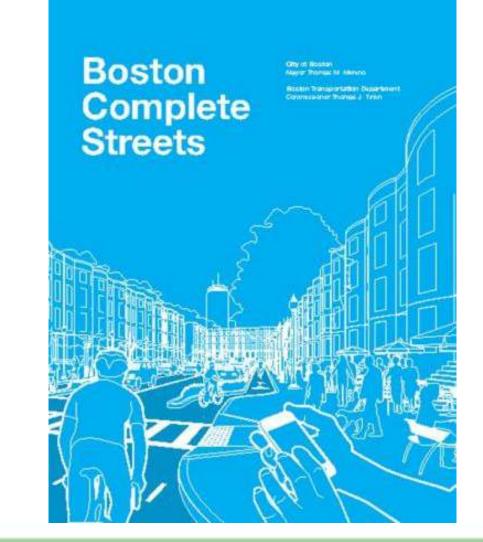


National Design Resources

Guide for the Development of **Bicycle Facilities**

2012 • Fourth Edition

PBIC Webinar www.pedbikeinfo.org



Local Design Resources

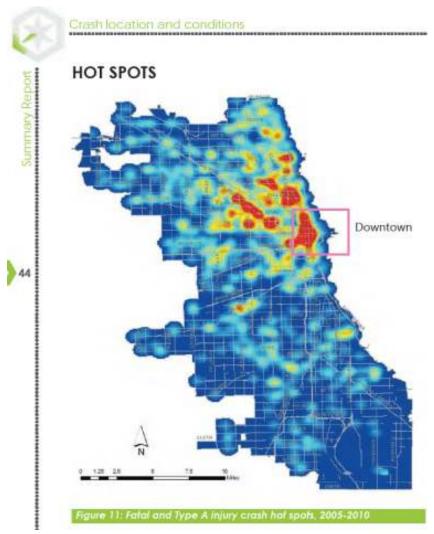
WISCONSIN BICYCLE FACILITY DESIGN HANDBOOK

JANUARY 2004 Miser updates in 2008 and 2000 WISCONSIN DEPARTMENT OF TRANSPORTATION

PBIC Webinar www.pedbikeinfo.org

Crash Data Analysis

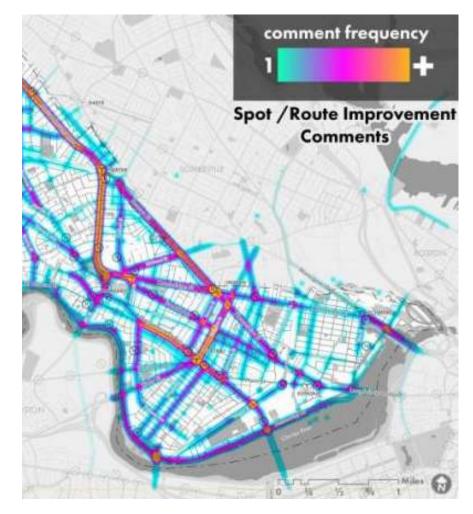
- 5 year minimum
- Review police reports
- Review emergency room or 1st responder data
- Identify:
 - hot spots & corridors
 - major crash types
 - demographics


PBIC Webinar www.pedbikeinfo.org

Crash Data Analysis

Crash data analysis can:

- Discover prevalent crash types and behaviors
- Target specific areas
- Inform selection of bicycle facility



Crash Data Analysis

Understand the limitations:

- crashes are usually dispersed
- Crash data does not include "near-misses"
- The public may perceive locations without crashes to be less safe
- Crash data may be incomplete or inaccurate

PBIC Webinar www.pedbikeinfo.org

Road Safety Audits

- 1. Identify location
- 2. Select RSA team
- 3. Start-up meeting
- 4. Field review
- 5. Findings & report
- 6. Present findings
- 7. Respond to findings
- 8. Implement improvements

BICYCLE ROAD SAFETY AUDIT GUIDELINES AND PROMPT LISTS

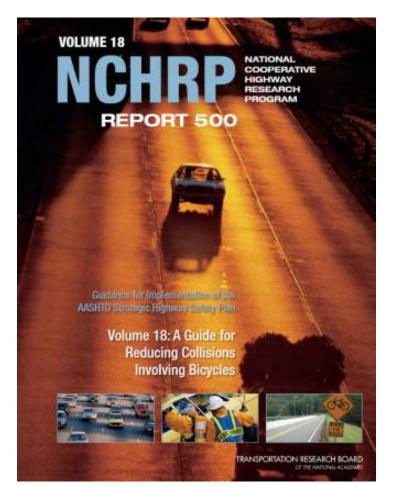
Pedestrian and Bicycle

Information Center

FHWA-SA-12-018

http://safety.fhwa.dot.gov/ped_bike/tools_solve/fhwasa12018/

Road Safety Audits


	RSA Zones							
	A. Street or Path	B. Structures	C. Intersections, Crossings, and Interchanges	D. Transitions	E. Transit			
7. Continuity & Connectivity								
	Are bicycle accommodations continuous?	Are bicycle accommodations continuous, or do	Are bicycle accommodations continuous, or do they end abruptly at crossings/ intersections/ interchanges?	Is there a safe way for cyclists from both directions to access connections or continue to other destinations along the street network?	Are crossings convenient and free of potential hazards for cyclists?			
	Do bicycle accommodations provide adequate connectivity to major destinations?	they end abruptly at bridge/tunnel crossings?						

Crash Countermeasure

Resources

BIKESAFE

Bicycle Safety Guide and Countermeasure Selection System

Guide: Background | Statistics | Analysis | Implementation | Countermeasures: List | Tool | Matrices | Case Studies | Resources

The Bicycle Safety Guide and **Countermeasure Selection System is** intended to provide practitioners with the latest information available for improving the safety and mobility of those who bike. The online tools provide the user with a list of possible engineering, education, or enforcement treatments to improve bicycle safety and/or mobility based on user input about a specific location.

GUIDE

Statistics

Background

thebicycle crash problem.

Understand what is needed to create a viable bicycle network.

Learn about the factors related to

Analysis How crash typing can lead to the most appropriate countermeasures.

Needed components for treatments.

Implementation

COUNTERMEASURES

Selection Tool Find countermeasures based on desired objectives.

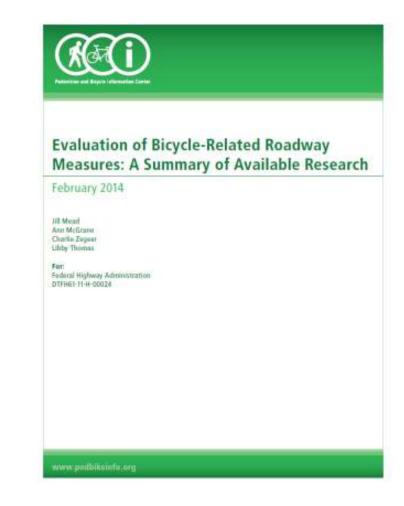
Selection Matrices Find countermeasures based on crash types and performance objectives.

Countermeasure List A comprehensive list of all countermeasures

5 Department of Iransportatio Federal Highway Administration

Authors and Acknowledgements

http://www.pedbikesafe.org/BIKESAFE/


http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_500v18.pdf

PBIC Webinar www.pedbikeinfo.org

Crash Countermeasure CMF

- Crash Modification Factors (CMF) are limited
 - Limited before/after data
 - Insufficient bike counts
- Lit review of countermeasure research available on BIKESAFE

Pedestrian and Bicycle

nformation Center

Crash Context

Section 3

Overview of Bicycle Safety Problem

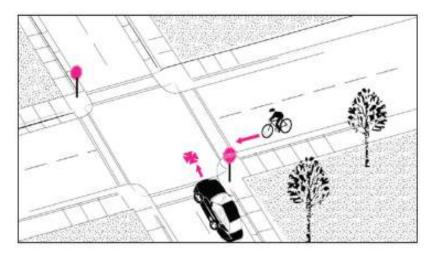
In 2012:

- 726 killed
- 49,000 injured
- Cyclist account for over 2% of all traffic deaths and injuries

...but are only 1% of all traffic

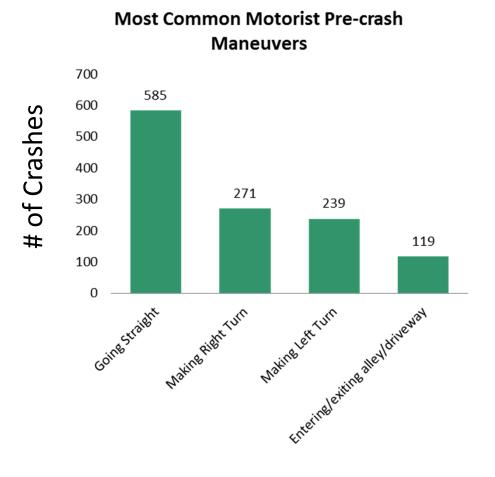
Types of Bicyclists

PBIC Webinar www.pedbikeinfo.org

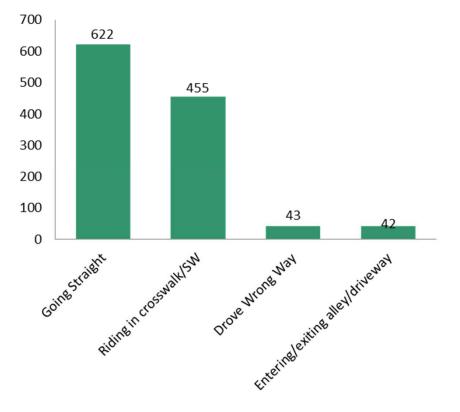

Types of Bicyclists

PBIC Webinar www.pedbikeinfo.org

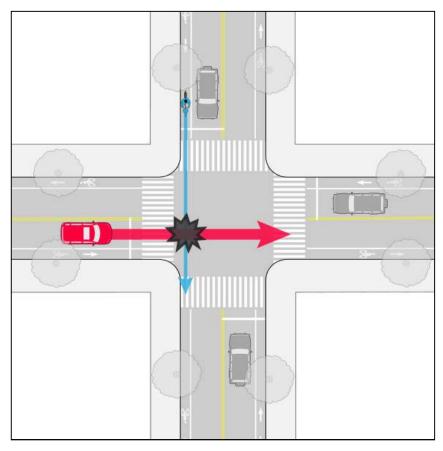
Common Crash Factors

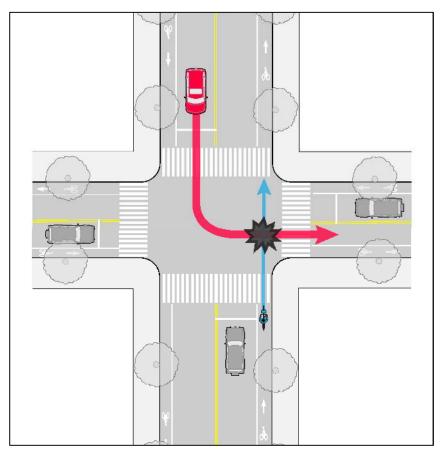

Source: FHWA Bicycle Road Safety Audit Guideline

PBIC Webinar www.pedbikeinfo.org


Bicycle Crash Type Groups	Percentage of Crashes								
	FHWA (early '90s)	North Carolina Urban ('04-'08)	North Carolina Rural ('04-'08)	Orlando Metropolitan Area ('03-'04)					
CROSSING PATHS									
Motorist failure to yield – intersection	14.4	13.9	5.5	14.0					
Bicyclist failure to yield – intersection	16.8	15.3	7.9	14.0					
Bicyclist failure to yield – midblock	11.7	8.6	10.8	9.3					
Motorist failure to yield – midblock (driveway/alley)	6.9	8.5	3.0	10.1					
Turning errors – bicyclist and motorist	1.4	1.5	1.7	2.7					
Bicyclist failure to clear intersection		1.3	0.2	0.0					
Crossing Path Total	52.6	49.1	29.1	50.1					
PAR	ALLEL PA	THS							
Motorist turned/merged into path of bicyclist	12.1	13.2	6.9	8.1					
Motorist overtaking bicyclist	8.6	8.9	29.3	8.1					
Bicyclist turned/merged into path of motorist	7.3	6.8	16.9	5.4					
Bicyclist overtaking motorist	2.7	1.6	0.7	0.6					
Operator wrong side/head-on (motorist or bicyclist)	2.8	2.1	5.6	2.5					
Motorist loss of control	06	03	0.5	0.3					
Bicyclist loss of control Parallel Path Total	1.8	2.2	1.3	1.0					
Parallel Path Total			61.2	26					
Total for Common Crash Types Listed		84.2	90.3	76.1					

Pre-crash Maneuvers

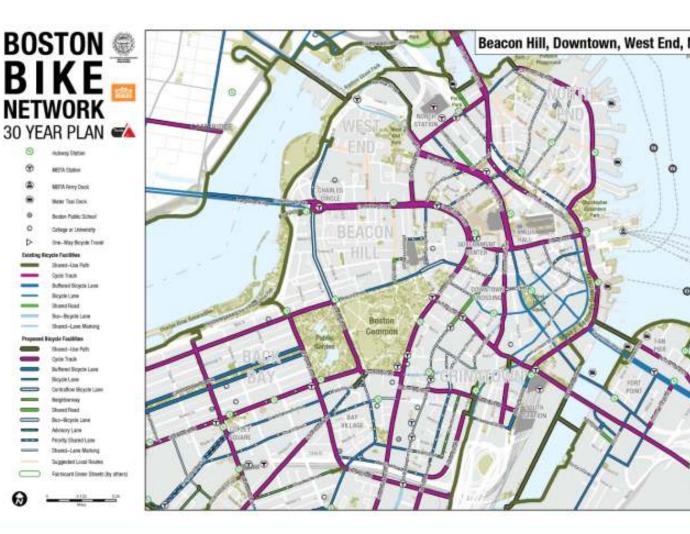

Most Common Bicyclist Pre-crash Maneuvers

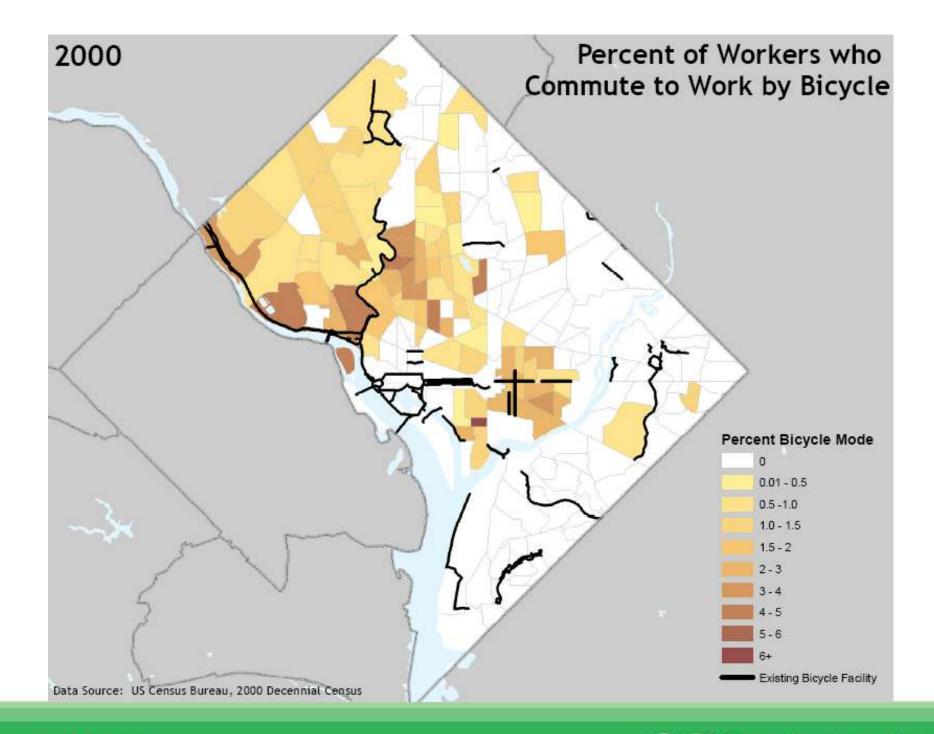

Source: City of Denver Bicycle Crash Study

PBIC Webinar www.pedbikeinfo.org

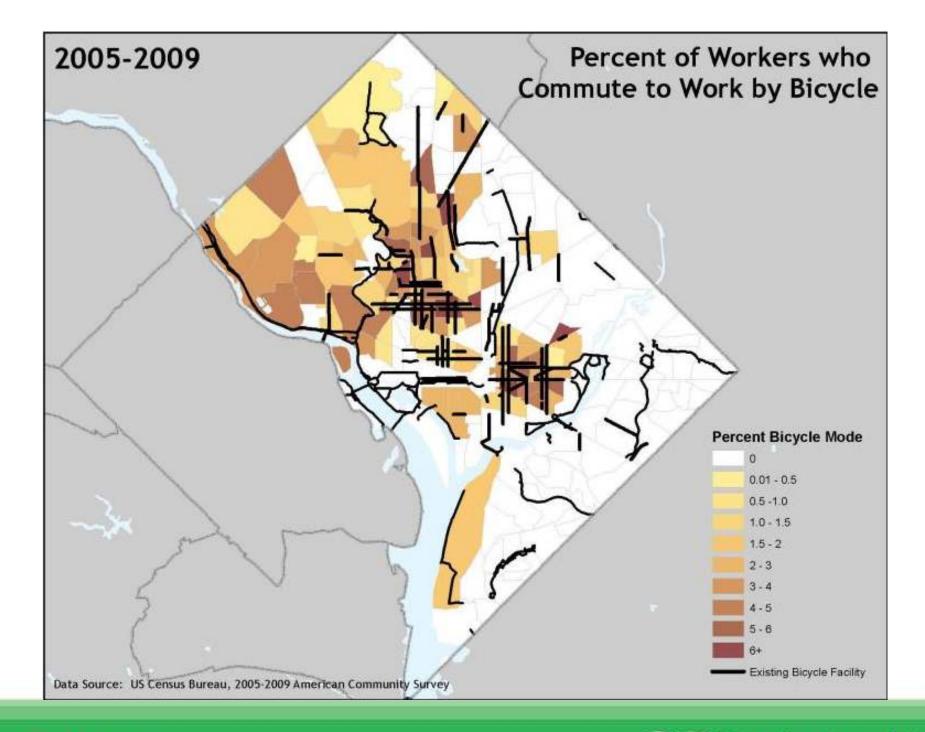
Broadside from the Right

Left Hook


On-Road Bicycling Infrastructure Crash Reduction Countermeasures Network Approach Section 4


Network Solutions

- Direct
- Seamless
- Fine grained
- Comfortable
- Connected


PBIC Webinar www.pedbikeinfo.org

PBIC Webinar www.pedbikeinfo.org

PBIC Webinar www.pedbikeinfo.org

Facility Selection

Using the Bicycle RSA Prompt Lists

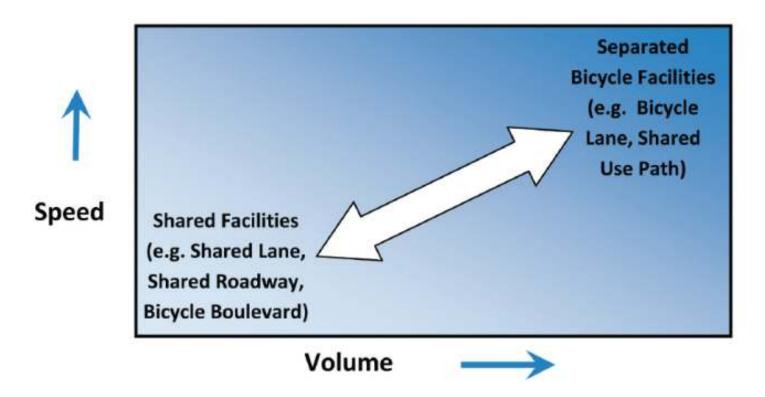
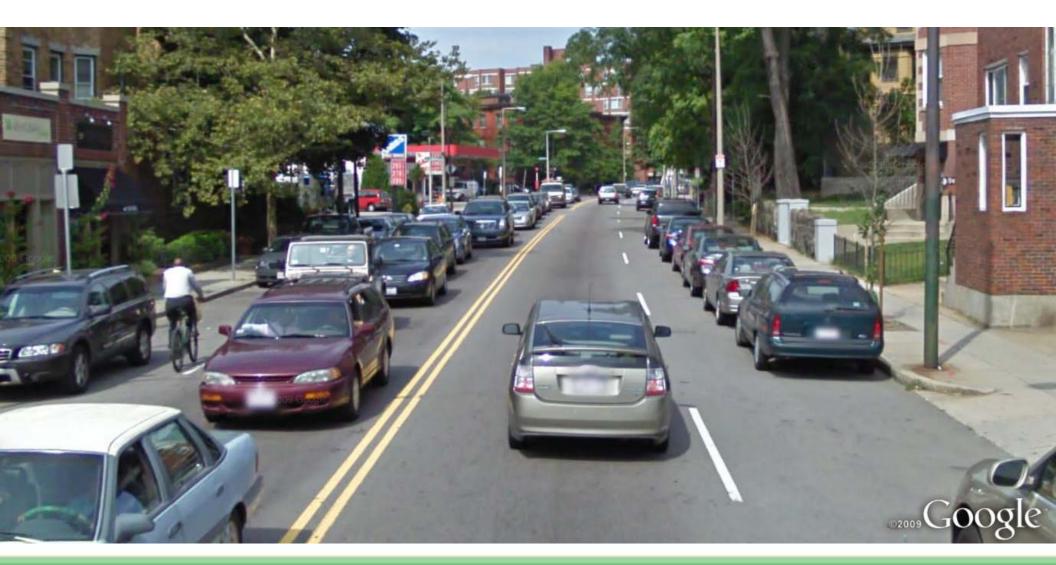


Figure 17. General Bicycle Facility Utilization Given the Context of Vehicular Traffic Volume and Speed.²⁷

PBIC Webinar www.pedbikeinfo.org



On-Road Bicycling Infrastructure Crash Reduction Countermeasures Street Segment Approach Section 5


Shared Lane Safety Challenges

PBIC Webinar www.pedbikeinfo.org

Wrong Way Riding

PBIC Webinar www.pedbikeinfo.org

Wrong Way Riding Countermeasures

- Shared lane markings:
 - Reduce sidewalk riding
 - Improve rider positioning
 - Reduce wrong way riding
 - Improve motorist passing behavior

PBIC Webinar www.pedbikeinfo.org

One-Way Street Wrong-Way Riding

One-Way Street Countermeasures

Contra-flow bike lanes

- Correct design leads to correct use
- Signs, signals, and markings add clarity for all modes

Sidewalk Riding

Sidewalk Riding

From City of Denver Crash Study

- 34% of all crashes involved a bicyclist riding on the sidewalk. Of these crashes...
 - 66% of bicyclists riding on the sidewalk were riding against traffic
 - 53 percent were riding on an arterial sidewalk where there was no parallel bicycle lane or path.
- Bicyclists riding on the sidewalk are less visible to motorists and more vulnerable to crashes

Sidewalk Riding Countermeasures

- Separated bicycle lanes (cycle tracks)
- Bicycle lanes
- Shared lane markings

PBIC Webinar www.pedbikeinfo.org

Sidewalk Riding

BIKE LANE

Inadequate infrastructure won't be used as intended...

Lane diets

- Narrow arterial lanes up to 10 feet acceptable AASHTO.
- 10' and 11' travel lanes don't increase crash rates in urban and suburban areas – NCHRP Project 17-26

PBIC Webinar www.pedbikeinfo.org

Buffered Bike Lanes

Increased comfort can promote correct use...

Sideswipe/Struck From Behind

Rural Crash Facts:

- 29% of crashes are overtaking
- 17% of crashes are turning/merging

Struck from Behind Countermeasures

- Shoulders
- Separated bicycle lanes (cycle tracks)
- Bicycle lanes
- Shared use paths

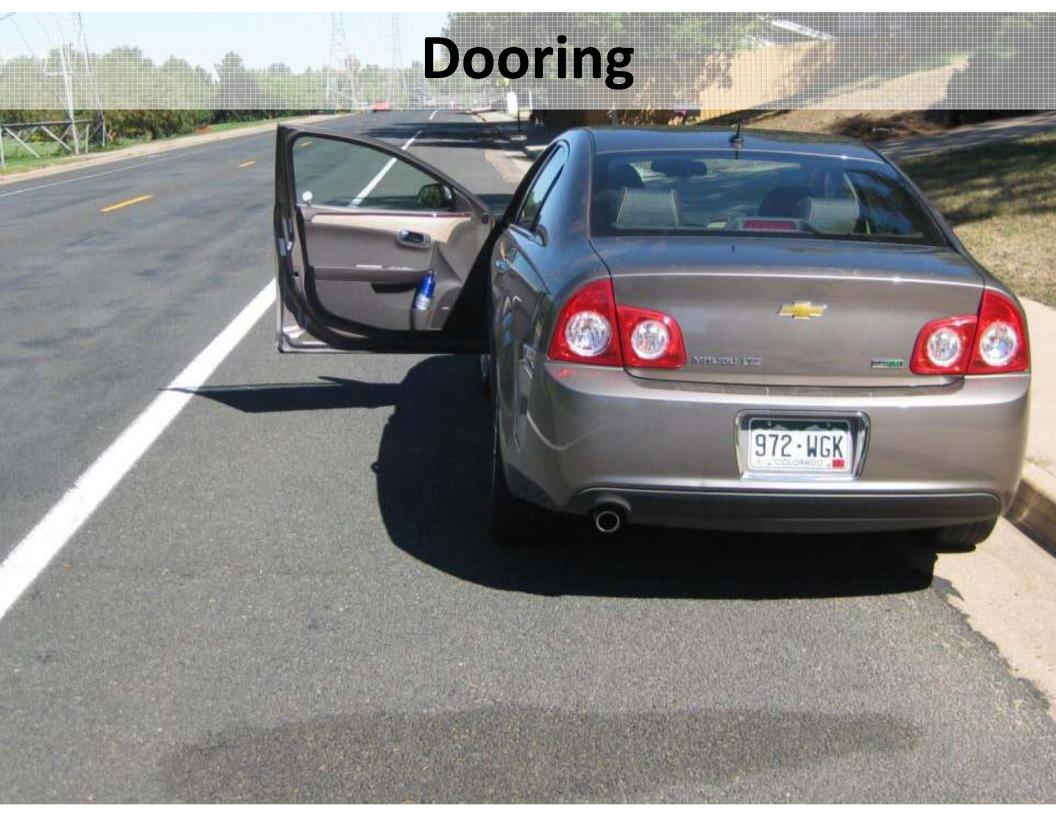
Sideswipe/Struck From Behind

Struck From Behind Countermeasure Curb-Separated Bike Lanes

PBIC Webinar www.pedbikeinfo.org

Struck From Behind Countermeasure Barrier-Separated Bike Lanes

PBIC Webinar www.pedbikeinfo.org



Separated Bicycle Lane Intersection Safety Countermeasures

PBIC Webinar www.pedbikeinfo.org

Dooring Countermeasure Climbing lanes

Marked shared lane downhill

Bike lane uphill

PBIC Webinar www.pedbikeinfo.org

Dooring Countermeasures

Wider Bike Lanes

Wider Parking Lanes

PBIC Webinar www.pedbikeinfo.org

Failure to Yield

PBIC Webinar www.pedbikeinfo.org

Countermeasure – Minicircle

Mini-Traffic Circles

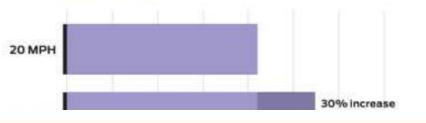
- Typically 12-16 feet in diameter
- Add deflection to travel lane
- Preferable to stop signs
- Positive effect on bicycling

Bike Boulevards

Source: NACTO

Guidance for vertical traffic 10 calming features:

- Slopes should not exceed 1:10 or be less steep than 1:25.
- Side slopes on tapers should be no greater than 1:6 to reduce the risk of bicyclists losing their balance.


Neighborhood Traffic Circle

Pinchpoint

Neckdown

Optional Features

Speed management may be (12) implemented on a trial basis to gauge residents' support prior to finalizing the design. Temporary speed humps, tables, and lumps are available. Temporary traffic calming should be used with caution as they can diminish residents' opinions due Depending on motor vehicle speeds, a bicyclist will be passed by a car going the same direction this many times during a 10 minute trip:

PBIC Webinar www.pedbikeinfo.org

Right Hook Crashes

Photo Credit: Jonathon Maus

Right Hook Countermeasure

- Add Right Turn Lane
- Minimize length of right turn lane
- Add R4-4 sign

PBIC Webinar www.pedbikeinfo.org

Right Hook Countermeasure

Highlight Conflict Zone

- Green increases
 conspicuity and
 awareness of conflict
 area
- Green can be dotted to match dotted lines within merging area

Right & Left Hook Countermeasure

- Bike lanes extended through intersection
- Option to color green

PBIC Webinar www.pedbikeinfo.org

Right & Left Hook Countermeasure

- Bicycle boxes
 - Provide head start for bicyclists
 - Improve bicyclists visibility at on-set of green signal

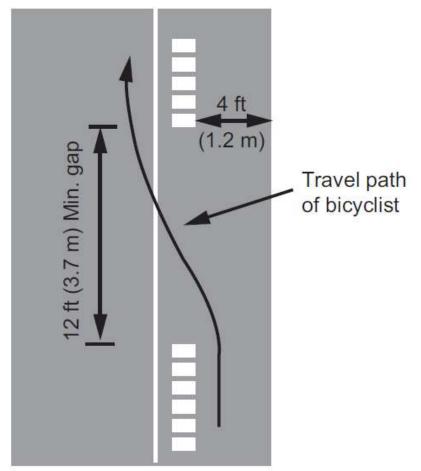
PBIC Webinar www.pedbikeinfo.org

Darkness Countermeasures

- Street lighting
- On-bike lighting

Crash facts for hours 6pm to 6am:

- 31% of all injuries
- 50% of all fatalities (alcohol frequent contributor)



PBIC Webinar www.pedbikeinfo.org

Rumble strips – NOT recommended unless:

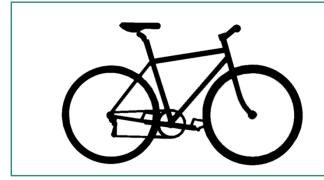
- Maintain a 4-ft min. clear path width with no curb present; 5-ft with curb
- Use gaps to allow cyclists to move across rumble strips as needed
- Centerline rumble strips may lead motorists to shy away from the centerline and move closer to bicyclists
- Utilize the narrowest and shallowest rumble strip design

Bridges, viaducts, and tunnels

 All should accommodate bicycles unless prohibited

Bridges, viaducts, and tunnels

 On long (1/2 mile+) bridges consider providing a shared-use path on each side separated by concrete barriers



PBIC Webinar www.pedbikeinfo.org

Signal Timing Practices

- AASHTO Bicycle guide describes 2 conditions:
 - Standing bicycle minimum green (start from stop)
 - Rolling bicycle minimum green (arrive moving)
- Children aged 10 to 19 over-represented in "trap" type crashes

Speed: 10 mph Acceleration: 1.5 ft/s² Deceleration: 5 ft/s² Perception-Reaction Time: 1 s

Countermeasure Takeaways

- Connected networks improve safety
- Comfort and safety have a relationship
- Land use, terrain, and traffic character influence use and safety
- Education & Enforcement strategies are also very important
- Our industry needs more count data for CMF's

October

Questions?

⇒ Archive at www.pedbikeinfo.org/webinars

- Downloadable and streaming recording, transcript, presentation slides
- ⇒ More questions?
 - Dan Goodman daniel.goodman@dot.gov
 - William Schultheiss wschultheiss@tooledesign.com
 - Peter Lagerwey plagerwey@tooledesign.com

